1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
| import torch.nn.functional as F import torch.nn as nn import torch.utils.checkpoint as checkpoint import torch
def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1): result = nn.Sequential() result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)) result.add_module('bn', nn.BatchNorm2d(num_features=out_channels)) return result
def conv_bn_relu(in_channels, out_channels, kernel_size, stride, padding, groups=1): result = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups) result.add_module('relu', nn.ReLU()) return result
def fuse_bn(conv_or_fc, bn): std = (bn.running_var + bn.eps).sqrt() t = bn.weight / std t = t.reshape(-1, 1, 1, 1)
if len(t) == conv_or_fc.weight.size(0): return conv_or_fc.weight * t, bn.bias - bn.running_mean * bn.weight / std else: repeat_times = conv_or_fc.weight.size(0) // len(t) repeated = t.repeat_interleave(repeat_times, 0) return conv_or_fc.weight * repeated, (bn.bias - bn.running_mean * bn.weight / std).repeat_interleave( repeat_times, 0)
class GlobalPerceptron(nn.Module):
def __init__(self, input_channels, internal_neurons): super(GlobalPerceptron, self).__init__() self.fc1 = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1, bias=True) self.fc2 = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1, bias=True) self.input_channels = input_channels
def forward(self, inputs): x = F.adaptive_avg_pool2d(inputs, output_size=(1, 1)) x = self.fc1(x) x = F.relu(x, inplace=True) x = self.fc2(x) x = F.sigmoid(x) x = x.view(-1, self.input_channels, 1, 1) return x
class RepMLPBlock(nn.Module):
def __init__(self, in_channels, out_channels, h, w, reparam_conv_k=None, globalperceptron_reduce=4, num_sharesets=1, deploy=False): super().__init__()
self.C = in_channels self.O = out_channels self.S = num_sharesets
self.h, self.w = h, w
self.deploy = deploy
assert in_channels == out_channels self.gp = GlobalPerceptron(input_channels=in_channels, internal_neurons=in_channels // globalperceptron_reduce)
self.fc3 = nn.Conv2d(self.h * self.w * num_sharesets, self.h * self.w * num_sharesets, 1, 1, 0, bias=deploy, groups=num_sharesets) if deploy: self.fc3_bn = nn.Identity() else: self.fc3_bn = nn.BatchNorm2d(num_sharesets)
self.reparam_conv_k = reparam_conv_k if not deploy and reparam_conv_k is not None: for k in reparam_conv_k: conv_branch = conv_bn(num_sharesets, num_sharesets, kernel_size=k, stride=1, padding=k//2, groups=num_sharesets) self.__setattr__('repconv{}'.format(k), conv_branch)
def partition(self, x, h_parts, w_parts): x = x.reshape(-1, self.C, h_parts, self.h, w_parts, self.w) x = x.permute(0, 2, 4, 1, 3, 5) return x
def partition_affine(self, x, h_parts, w_parts): fc_inputs = x.reshape(-1, self.S * self.h * self.w, 1, 1) out = self.fc3(fc_inputs) out = out.reshape(-1, self.S, self.h, self.w) out = self.fc3_bn(out) out = out.reshape(-1, h_parts, w_parts, self.S, self.h, self.w) return out
def forward(self, inputs): global_vec = self.gp(inputs)
origin_shape = inputs.size() h_parts = origin_shape[2] // self.h w_parts = origin_shape[3] // self.w
partitions = self.partition(inputs, h_parts, w_parts)
fc3_out = self.partition_affine(partitions, h_parts, w_parts)
if self.reparam_conv_k is not None and not self.deploy: conv_inputs = partitions.reshape(-1, self.S, self.h, self.w) conv_out = 0 for k in self.reparam_conv_k: conv_branch = self.__getattr__('repconv{}'.format(k)) conv_out += conv_branch(conv_inputs) conv_out = conv_out.reshape(-1, h_parts, w_parts, self.S, self.h, self.w) fc3_out += conv_out
fc3_out = fc3_out.permute(0, 3, 1, 4, 2, 5) out = fc3_out.reshape(*origin_shape) out = out * global_vec return out
def get_equivalent_fc3(self): fc_weight, fc_bias = fuse_bn(self.fc3, self.fc3_bn) if self.reparam_conv_k is not None: largest_k = max(self.reparam_conv_k) largest_branch = self.__getattr__('repconv{}'.format(largest_k)) total_kernel, total_bias = fuse_bn(largest_branch.conv, largest_branch.bn) for k in self.reparam_conv_k: if k != largest_k: k_branch = self.__getattr__('repconv{}'.format(k)) kernel, bias = fuse_bn(k_branch.conv, k_branch.bn) total_kernel += F.pad(kernel, [(largest_k - k) // 2] * 4) total_bias += bias rep_weight, rep_bias = self._convert_conv_to_fc(total_kernel, total_bias) final_fc3_weight = rep_weight.reshape_as(fc_weight) + fc_weight final_fc3_bias = rep_bias + fc_bias else: final_fc3_weight = fc_weight final_fc3_bias = fc_bias return final_fc3_weight, final_fc3_bias
def local_inject(self): self.deploy = True fc3_weight, fc3_bias = self.get_equivalent_fc3() if self.reparam_conv_k is not None: for k in self.reparam_conv_k: self.__delattr__('repconv{}'.format(k)) self.__delattr__('fc3') self.__delattr__('fc3_bn') self.fc3 = nn.Conv2d(self.S * self.h * self.w, self.S * self.h * self.w, 1, 1, 0, bias=True, groups=self.S) self.fc3_bn = nn.Identity() self.fc3.weight.data = fc3_weight self.fc3.bias.data = fc3_bias
def _convert_conv_to_fc(self, conv_kernel, conv_bias): I = torch.eye(self.h * self.w).repeat(1, self.S).reshape(self.h * self.w, self.S, self.h, self.w).to(conv_kernel.device) fc_k = F.conv2d(I, conv_kernel, padding=(conv_kernel.size(2)//2,conv_kernel.size(3)//2), groups=self.S) fc_k = fc_k.reshape(self.h * self.w, self.S * self.h * self.w).t() fc_bias = conv_bias.repeat_interleave(self.h * self.w) return fc_k, fc_bias
class FFNBlock(nn.Module): def __init__(self, in_channels, hidden_channels=None, out_channels=None, act_layer=nn.GELU): super().__init__() out_features = out_channels or in_channels hidden_features = hidden_channels or in_channels self.ffn_fc1 = conv_bn(in_channels, hidden_features, 1, 1, 0) self.ffn_fc2 = conv_bn(hidden_features, out_features, 1, 1, 0) self.act = act_layer()
def forward(self, x): x = self.ffn_fc1(x) x = self.act(x) x = self.ffn_fc2(x) return x
class RepMLPNetUnit(nn.Module):
def __init__(self, channels, h, w, reparam_conv_k, globalperceptron_reduce, ffn_expand=4, num_sharesets=1, deploy=False): super().__init__() self.repmlp_block = RepMLPBlock(in_channels=channels, out_channels=channels, h=h, w=w, reparam_conv_k=reparam_conv_k, globalperceptron_reduce=globalperceptron_reduce, num_sharesets=num_sharesets, deploy=deploy) self.ffn_block = FFNBlock(channels, channels * ffn_expand) self.prebn1 = nn.BatchNorm2d(channels) self.prebn2 = nn.BatchNorm2d(channels)
def forward(self, x): y = x + self.repmlp_block(self.prebn1(x)) z = y + self.ffn_block(self.prebn2(y)) return z
class RepMLPNet(nn.Module):
def __init__(self, in_channels=3, num_class=1000, patch_size=(4, 4), num_blocks=(2,2,6,2), channels=(192,384,768,1536), hs=(64,32,16,8), ws=(64,32,16,8), sharesets_nums=(4,8,16,32), reparam_conv_k=(3,), globalperceptron_reduce=4, use_checkpoint=False, deploy=False): super().__init__() num_stages = len(num_blocks) assert num_stages == len(channels) assert num_stages == len(hs) assert num_stages == len(ws) assert num_stages == len(sharesets_nums)
self.conv_embedding = conv_bn_relu(in_channels, channels[0], kernel_size=patch_size, stride=patch_size, padding=0)
stages = [] embeds = [] for stage_idx in range(num_stages): stage_blocks = [RepMLPNetUnit(channels=channels[stage_idx], h=hs[stage_idx], w=ws[stage_idx], reparam_conv_k=reparam_conv_k, globalperceptron_reduce=globalperceptron_reduce, ffn_expand=4, num_sharesets=sharesets_nums[stage_idx], deploy=deploy) for _ in range(num_blocks[stage_idx])] stages.append(nn.ModuleList(stage_blocks)) if stage_idx < num_stages - 1: embeds.append(conv_bn_relu(in_channels=channels[stage_idx], out_channels=channels[stage_idx + 1], kernel_size=2, stride=2, padding=0))
self.stages = nn.ModuleList(stages) self.embeds = nn.ModuleList(embeds) self.head_norm = nn.BatchNorm2d(channels[-1]) self.head = nn.Linear(channels[-1], num_class)
self.use_checkpoint = use_checkpoint
def forward(self, x): x = self.conv_embedding(x) for i, stage in enumerate(self.stages): for block in stage: if self.use_checkpoint: x = checkpoint.checkpoint(block, x) else: x = block(x) if i < len(self.stages) - 1: embed = self.embeds[i] if self.use_checkpoint: x = checkpoint.checkpoint(embed, x) else: x = embed(x) x = self.head_norm(x) x = F.adaptive_avg_pool2d(x, 1) x = x.view(x.size(0), -1) x = self.head(x) return x
def locality_injection(self): for m in self.modules(): if hasattr(m, 'local_inject'): m.local_inject()
def create_RepMLPNet_T224(deploy=False): return RepMLPNet(channels=(64, 128, 256, 512), hs=(56,28,14,7), ws=(56,28,14,7), num_blocks=(2,2,6,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,16,128), deploy=deploy) def create_RepMLPNet_T256(deploy=False): return RepMLPNet(channels=(64, 128, 256, 512), hs=(64,32,16,8), ws=(64,32,16,8), num_blocks=(2,2,6,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,16,128), deploy=deploy) def create_RepMLPNet_B224(deploy=False): return RepMLPNet(channels=(96, 192, 384, 768), hs=(56,28,14,7), ws=(56,28,14,7), num_blocks=(2,2,12,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,32,128), deploy=deploy) def create_RepMLPNet_B256(deploy=False): return RepMLPNet(channels=(96, 192, 384, 768), hs=(64,32,16,8), ws=(64,32,16,8), num_blocks=(2,2,12,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,32,128), deploy=deploy) def create_RepMLPNet_D256(deploy=False): return RepMLPNet(channels=(80, 160, 320, 640), hs=(64,32,16,8), ws=(64,32,16,8), num_blocks=(2,2,18,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,16,128), deploy=deploy) def create_RepMLPNet_L256(deploy=False): return RepMLPNet(channels=(96, 192, 384, 768), hs=(64,32,16,8), ws=(64,32,16,8), num_blocks=(2,2,18,2), reparam_conv_k=(1, 3), sharesets_nums=(1,4,32,256), deploy=deploy)
model_map = { 'RepMLPNet-T256': create_RepMLPNet_T256, 'RepMLPNet-T224': create_RepMLPNet_T224, 'RepMLPNet-B224': create_RepMLPNet_B224, 'RepMLPNet-B256': create_RepMLPNet_B256, 'RepMLPNet-D256': create_RepMLPNet_D256, 'RepMLPNet-L256': create_RepMLPNet_L256, }
def get_RepMLPNet_model(name, deploy=False): if name not in model_map: raise ValueError('Not yet supported. You may add some code to create the model here.') model = model_map[name](deploy=deploy) return model
if __name__ == '__main__': model = create_RepMLPNet_B224() model.eval()
x = torch.randn(1, 3, 224, 224) origin_y = model(x)
model.locality_injection()
print(model) new_y = model(x) print((new_y - origin_y).abs().sum())
|