1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
| import torch import torch.nn as nn from torch.hub import load_state_dict_from_url from test_bottleneck import ACmix
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, k_att, head, k_conv, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = ACmix(width, width, k_att, head, k_conv, stride=stride, dilation=dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
def forward(self, x): identity = x
out = self.conv1(x) out = self.bn1(out) out = self.relu(out)
out = self.conv2(out) out = self.bn2(out) out = self.relu(out)
out = self.conv3(out) out = self.bn3(out)
if self.downsample is not None: identity = self.downsample(x)
out += identity out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, k_att=7, head=4, k_conv=3, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer
self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], k_att, head, k_conv) self.layer2 = self._make_layer(block, 128, layers[1], k_att, head, k_conv, stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], k_att, head, k_conv, stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], k_att, head, k_conv, stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0)
def _make_layer(self, block, planes, blocks, rate, k, head, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), )
layers = [] layers.append(block(self.inplanes, planes, rate, k, head, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, rate, k, head, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x)
x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x)
x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x)
return x
def forward(self, x): return self._forward_impl(x)
def _resnet(block, layers, **kwargs): model = ResNet(block, layers, **kwargs) return model
def ACmix_ResNet(layers=[3,4,6,3], **kwargs): return _resnet(Bottleneck, layers, **kwargs)
if __name__ == '__main__': model = ACmix_ResNet().cuda() input = torch.randn([2,3,224,224]).cuda() total_params = sum(p.numel() for p in model.parameters()) print(f'{total_params:,} total parameters.') total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print(f'{total_trainable_params:,} training parameters.') print(model(input).shape)
|